Phenolic Compounds of Propolis from Central Chilean Matorral

Orlando Muñoz^{a,*}, Raúl C. Peña^b, Enrique Ureta, Gloria Montenegro^b, Colby Caldwell and Barbara N. Timmermann^c

- ^a Faculty of Sciences, Universidad de Chile, Palmeras 3425, Santiago de Chile. Fax: 56(2)2713888. E-mail: omunoz@abello.dic.uchile.cl
- b Facultad de Agronomía e Ingeniería Forestal, P. Universidad Católica, P. O. Box 306, Santiago-22, Chile
- ^c The University of Arizona, Tucson, AZ 85271, USA
- * Author for correspondence and reprint requests
- Z. Naturforsch. 56c, 273-277 (2001); received December 6, 2000/January 23, 2001

Propolis, Structure Elucidation, Plant Sources, Phenolics

Pinocembrin, acacetin, galanguin, izalpin, kaempferide, prenyletin and diarytheptane were isolated from propolis from Central Chile.

Introduction

Propolis is an important product of the beehive produced by the activity of honey bee (*Apis mellifera*), gathering and transforming the bud exudate, by mixing it with waxy substances (Serra Vonhevi and V. Coll, 1996).

The mean composition of propolis is 55% resins and balsam, 30% waxes, 10% essential oils and 5% pollen. The chemical pattern of resin or balsam fraction varies considering the botanical and geographical origin, likewise the pattern of pollen grains (Brown, 1995; Walker and Crane, 1987).

This substance, propolis, is employed by the bee in the protection of beehive. It is used to fill cracks, reduce or close openings, strengthen and join cells to seal their hive from the penetration of water, thus creating an unfavorable environment for the development of microorganisms. Propolis also is used as an "embalming" substance to cover hive invaders which bees have killed but cannot transport out the hive (Ghisalberti, 1979). Chemical composition of Chilean propolis shows substances in the series lignane (Valcic *et al.*, 1998). Recently we isolated further known compounds (Muñoz *et al.*, 2001) from material of Cuncumen, an inland Mediterranean type climate site.

Chemical composition of the propolis appears close to the chemical composition of plants located near to the beehive. For example, the plant species, *Baccharis linearis*, shows five phenolic compounds found in the propolis obtained in the study site (Valcic *et al.*, 1999).

The site is located in Colliguay a property apart of main highroad in sclerophyllous shrubland of coast. Nevertheless, it is an area where the forest become a matorral (shrubland), with many regenerative states The following representatives are found: Cryptocarya alba, Peumus boldus, accompanied with minor ones Escallonia pulverulenta, Eupatorium glechonophyllum, Maytenus boaria, Quillaja saponaria, Salix humboldtiana and spots of Nothofagus dombeyi (coihue) and N. obliqua (Gajardo, 1993).

In this work, we investigate the botanical origin of samples of propolis by microscopic analysis of the pollen grains and leaf fragments found in the sample, in order to traced native species with chemical as drug potentiality. As part of a research program on the chemistry and botany of propolis from Central Chile, we report the isolation and structure elucidation of seven phenolics.

Material and Methods

General experimental procedures

¹H and ¹³C NMR were acquired on a Varian United −300 (300, 75 MHz) Spectrometer. All proton and carbon assignments are based on HMQC and HMBC experiments.

FAB-MS and high resolution were recorded on a JEOL HX 110. Negative ESI – MS was recorded on a Finnigan MAT TSQ7000. The HPLC system used was equipped with a Varian 9002 pump, a Varian Star 9040 RI detector. HPLC column used were All-

0939-5075/2001/0300-0273 \$ 06.00 © 2001 Verlag der Zeitschrift für Naturforschung, Tübingen ⋅ www.znaturforsch.com ⋅ N

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

tech (Adsorbosil Silica 5 μ m 4.6 \times 250 mm). Analytical TLC was performed on silica gel GF₂₅₄ (Merck 5554) and Macherey-Nagel silica gel plates Polygram SIL G/UV₂₅₄. Spots were detected by UV light and anisaldehyde sulfuric acid as the spray reagent. Column chromatography (cc) was performed with Macherey-Nagel silica gel 60, 50–200 μ m.

Biological material

The propolis samples obtained of Colliquay hives, Central Chile, (33° S 71° W) underwent several chemical analyses in the laboratory. The semisolid sediment that originated was used to find out the botanical origin, by the analysis of the pollen grains and the morphological structures retained in propolis. Five preparations for optical microscopy were made from each sediment, where the different pollen grains were counted and identified, as well as the remains of anatomical structures such as epidermal tissues and trichomes. For this identification there is a reference palinotheque at the Pontificia Universidad Católica de Chile, permanent microscopic preparations and pertinent bibliography (Heusser, 1971; Montenegro, 1984). Preparations for scanning electron microscopy were also made, so as to corroborate the identification of the plant species, observing in greater detail the pollen grains and anatomical structures, and identifying them by comparison with permanent preparations.

Extraction and isolation

Propolis (80 g) was cut into small pieces and extracted three times with EtOAc (3×0.6 l) at room temperature for 24 h. After filtration through a paper filter, the filtrates were combined and the solvent evaporated in vacuo. The dried extract was applied directly on a column chromatography (150 \times 0.4 cm) on silica gel with an *n*-hexane/EtOAc gradient (0, 2, 5, 10, 20, 50, 100% EtOAc) yielding five fractions of increasing polarity. Fraction 2 was separated into four subfractions 2.1-2.4 by column chromatography on Silica gel with an n-hexane/EtOAc 8:2. Fraction 2.1 yielded direct 1 (34.3 mg). Fractions 2.3 was applied to a column chromatography on silica gel with hexane/EtOAc gradient (5, 10, 20, 50 and 100% EtOAc) yielding crude 2. Additional purified by crystallization gave 2 (17.9 mg). Fraction 2.4 was applied to column

chromatography on silica gel with hexane/EtOAc gradient (5, 15, 20, 25, 35, 50, 100% EtOAc) yielding crude 3, 4 and 5.

All fractions were directly crystallized obtaining **3** (13 mg), **4** (24 mg) and **5** (27 mg).

Fraction four, was applied to column chromatography on silica gel with CH_2Cl_2 –MeOH gradient (0.5, 1, 2 and 5% MeOH) yielding crude 12 mg of **6**. HPLC with CH_2Cl_2 MeOH (99.5:0.5 MeOH v/v) yielded 7.1 mg of **6**. Repurification of this fraction by HPLC (with CH_2Cl_2 MeOH 0.(75:0.5 MeOH) yielded 5.1 mg of **6**. Fraction five was applied to column chromatography on silica gel with CH_2Cl_2 -MeOH gradient (0, 0.5, 1, 2, 3%) yielding crude 12 mg of 7. HPLC with MeOH-H₂0 4:6 yielded 4.0 mg of **7**.

Identification

Compound **1** (pinocembrin) positive high resolution FAB-MS (mNBA) m/z 256.1498 (calc. for $C_{15}H_{12}O_3$, 256, 1481), 1H NMR (COCl₃) δ : 1H RMN (CDCl₃) δ : 2.75 (1H, dd, J = 2.8, 17.1 H-3 ec), 3.05 (1H, dd, J = 2.8, 17.1 H-3 ax), 5.42 (1H, dd, J = 2.8, 12.7, H-2), 5.90 (1H, d, J = 2.0, H-6), 5.92 (1H, d, J = 2.0, H-8), 7.35 (1H, m, H, 2'), 7.43 (2 H, m, H-4', H-5'), 7.50 (H-6'm) 13 C NMR (CDCl₃) δ : 44.30 (C-3), 80.56 (C-2), 96.38 (C-8), 97.33 (C-6), 103.52 (C-10), 127.47 (C-2'), 129.75 (C-6'), 129.83 (C-3', 4', 5') 140.53 (C-1'), 164.79 (C-9) 165.61 (C-5), 168.53 (C-7), 197.42 (C-4).

Compound **2** (acacetin) the compound was identified by co-chromatography and comparison of its NMR data with those of a standard sample. APCI-MS m/z: 285 [M+H]⁺ corresponding to molecular formula ($C_{16}H_{12}O_5$); ¹H NMR (py-d5) δ : 3.75 (3H, s, CH₃O), 6.60 (1H, d, J = 2.0 Hz, H-6), 6.70 (1H, d, J = 2 OHz, H-8), 6.91 (1H, s, H-3), 7.22 (1H, d, J = 9, H-3'), 7.12 (1H, d, J = 9, H-5'), 7.95 (1 H, d, J = 9, H-2'), 7.95 (1 H, d, J = 9, H-6'). ¹³C NMR (CDCl₃) δ : 56.9 (MeO), 93.8 (C-8), 99.3 (C-6), 105.0 (C-3), 107.0 (C-10), 128.1 (C-3', 5'), 123.5 (C-1'), 129.9 (C-2', C-6'), 158,0 (C-9), 163,5 (C-5), 163.6 (C-4'), 165.2 (C-2), 166,0 (C-7), 184.7 (C-4).

Compound **3** (galangin) APCI-MS m/z corresponding to molecular formula $(C_{15}H_{10}O_4)$. ¹H NMR (py-d5) δ : 6.76 (H, d, J = 2, H-6), 6.84 (1H, d, J = 2, H-8), 7.44 (1H, m, H-3'), 7.49 (1H, m, H-4'), 7.55 (1H, m, H-5'), 8.51 (1H, dd, J = 1.7, 8.1)

(H-2'), 8.51 (1H, d, d, J = 1.7, 8.1, H-6'). ¹³C NMR (CDCl₃) δ : 94.74 (C-8), 99.73 (C-6), 104, 94 (C-10), 123.67 (C-2'), 123.86 (C-6'), 124.07 (C-3), 124.15 (C-5'), 128.72 (C-4'), 130.23, (C-1'), 136.63 (C-3), 146.61 (C-2), 157.98 (C-9), 162.84 (C-5), 164.3 (C-7), 178.02 (C-4).

Compound **4** (isalpinin) positive high resolution FAB-MS (m NBA) m/z: 284.1497 (calc. for $C_{16}H_{12}O_5$, 284. 488. 1H NMR (CDCl₃) δ : 3.75 (·H, s, CH₃O), 6.35 (1H, d, J=2.0, H-6), 6.45 (1H, d, J=2.0, H-8), 8.15 (1H, dd, J=1.5, J=1.5

Compound **5**. APCI – MS m/z: 301 [M+H]⁺ corresponding to molecular formula ($C_{16}H_{12}O_6$); ¹H and ¹³C NMR in Py coincided with those reported (Urbatsch, *et al.*, 1976; Chari *et al.*, 1977).

Compound **6** (prenyletin) APCI-MS m/z: 247 [M+H]⁺ corresponding to molecular formula $(C_{14}H_{14}O_4)$; ¹H NMR (CDCl₃) δ : 1.78 (3H, s, Me), 1.81 (3H, s, Me), 4.65 (2H, d, J = 6, CH₂), 5.45 (1H, tJ = 1.5 Hz H olef.), 6.28 (1H, d, J = 9.8 Hz, H-1), 7.58 (1H, d, J = 9.8 Hz, H-2), 6.95 (1H, s, Ar), 6.82 (1H, s, Ar). ¹³C NMR (CDCl₃) δ : 151.50 (C-2), 112.09 (C-3), 142.39 (C-4), 110.85 (C-5), 66.29 (C-6), 113.73 (C-7), 113.73 (C-8), 149.29 (C-9), 100.28 (C-10), 25.79 (C-2'), 118.02 (C-3'), 140.21 (C-4'), 25.77 (C-5'), 18.32 (C-6').

Compound **7** (*trans*-3,5-dihydroxy-1,7-diphenylhept-1-ene). APCI-MS m/z: 283 [M+H]⁺ corresponding to molecular formula ($C_{19}H_{22}O_2$). ¹H NMR (CDCl₃) δ : 1.85 (2H, m, CH₂), 2.63 (2H, m, -CH₂-Ar), 2.71 (2H, m, HOC-CH₂-COH, 4.02 (1H, m, H gem), 4.65 (1H, m, Hgem), 6.25 (1H, dd, J = 5.7, 1.5, 1.0 Hz, H olef.), 6.61 (1H, d, J = 5.7, 1.5, 1.0 Hz H olef.), 7.15–7.40 (10H, m, Ar). ¹³C NMR (CDCl₃) δ : 32.10 (C-7), 39.19 (C-6), 68.87 (C-5), 42.62 (C-4), 70.59 (C-3), 141.89 (C-2), 128.63 (C-1), 136.58 (C-1' Ar), 126.50 (C-2' Ar), 128.62 (C-3' Ar)', 127. 70 (C-4' Ar), 141.7 (C-1" Ar), 128.45 (C-2" Ar), 128.83 (C-3"), 125.90 (C-4" Ar).

Results

Seven compounds were isolated and characterized from propolis: flavanoids, 1 pinocembrin, 2 acacetin,

3 galangin, 4 izalpinin and 5 kaempferide, the coumarin prenyletin 6 and a diarylheptene 7, trans-3, 5-dihydroxy-1,7-diphenyl-hept-1-ene. In contrast with propolis from Santa Cruz, Quebrada Yaquil (Valcic et al., 1999), rich in lignane, in this study we report many flavanone, flavones, and flavonols.

Pharmacological properties of propolis of many Mediterranean and extra tropical areas of the world are well documented, (Kroll *et al.*, 1993; Marcucci, 1995; Mirzoeva and Calder, 1996; Natarajan *et al.*, 1996; Volper and Elster, 1996, Dugas *et al.*, 2000, Bankova *et al.*, 2000). Nevertheless, pharmacodynamic activity of the propolis of Chilean sources has not yet been studied, with the only exception of the isolation of antibiotic and antifungal compounds (Valcic *et al.*, unpubl. data).

Pinocembrin and galangin have antibacterial activity (Villanueva et al., 1970), pinocembrin has also fungicidal activity (Metzner et al., 1997) and local anesthetic activity (Paintz et al., 1979) while acacetin has antiinflammatory activity (Bankova et al., 1983).

The flavanone pinocembrin, the flavone acacetin and the flavonol galangin have been previously identified in many honey samples from different geographical and botanical origins (Soler et al., 1995) Prenyletin, formerly isolated from Haplopappus baylahuen has antiinflamatory activity (Schwenker et al., 1967).

The pollen frequency pattern of Colliguay site shows the following major species as resource for propolis: Escallonia pulverulenta (35.19), Salix humboldtiana (21.78), Eucalyptus globulus (19.55) and minor ones Eupatorium glechonophyllum (7,26), Quillaja saponaria (6.7), Peumus boldus (5.02). Also were detected Nothofagus dombeyi (2.23), Nothofagus obliqua (0.55), Cryptocarya alba (0.55), Maytenus boaria (0.55) and Pinus radiata (0.55).

Probably honeybees obtain resins with pinocembrin from *Escallonia pulverulenta*. This flavanone was formerly reported from this source (García *et al.*, 1990). Chemistry of *Salix humboldtiana*, Chilean willow, is poor known only salicin has been reported (Gupta, 1995).

Propolis of Chile, is collected of common species of Mediterranean type climates, viz. Poplar, willows, but also from many native trees and shrubs including Cryptocarya alba, Escallonia pulverulenta, Eupatorium glechonophyllum, Maytenus boaria, Nothofagus dombeyi, Nothofagus

Fig. 1. Compounds **1–7** isolated from Chilean propolis.

obliqua, Peumus boldus, Quillaja saponaria, and Salix humboldtiana.

Interestingly, benzophenones are compounds isolated from Chilean sources of propolis, formerly detected in material from Venezuela, and recently from material of Cuba, three very different and isolated sites, by both climatic, and vegetation or floristic factors (Barberán et al., 1993, Cuesta Rubio et al., 1999). Recently, was been reported a prenylated chromane derivative from methanolic extract of Brazilian propolis. Prenylated p-coumaric acids and acetophenones are secondary metabolites, typical for south American Baccharis species (Bohlmann et al., 1981). In tropical regions there are no poplars and birches, and bees have to find new plant sources of propolis. Cistus was identified in border areas with almost tropical climate, in Tunisia (Martos et al, 1997). Baccharis spp. are a major source of tropical propolis, in addition to Clusia and Araucaria heterophylla (Bankova et al., 1996; Banskota *et al.*, 1998). *Clusia* species, were reported from tropical sources (Banskota *et al.*, 1998; Thomas Barberán *et al.*, 1993).

Acknowledgements

This study was supported by the ICBG "Bioactive Agents from Dryland Plants of Latin America" Grant 2U01 TW 00316-08 (to B. Timmermann) from the National Institute of Health (NIH), the National Science Foundation (NSF) as well as and UDLP "Development of Sustainable Agriculture in Arid Region of Chile" Grant PCE 5063-A-00-3033-00 from the US Agency for International Development (USAID) (to B. Timmermann) and Fondecyt 1980967 (To G. Montenegro). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH, NSF or USAID and Fondecyt.

Bankova V., Dyulgerov A., Popov S., Evstatieva L., Kuleva L., Pureb O. and Zamjansan Z. (1992), Propolis produced in Bulgaria and Mongolia: phenolic compounds and plant origin. Apidologie **23**, 79–85.

Bankova V., Marcucci M. C., Simova S., Nikolova N., Kujumgiev A. and Popov S. (1996). Antibacterial diterpenic acid from Brazilian propolis. Z. Naturforsch.

51c, 277–280.

Bankova V. S., de Castro S. and Marcucci M. C. (2000), Propolis: recent advances in chemistry and plant origin. Apidologie **31**, 3–15.

- Banskota A. H., Tezuka Y., Prasain J. K., Matsushige K., Saiki I. and Kadota S. (1998), Chemical constituents of Brazilian Propolis and their cytotoxic activities. J. Nat. Prod. **61**, 896–900.
- Bohlmann F., Kramp W., Grenz, M., Robinson H. and King R. (1981), Diterpenes from *Baccharis* species. Phytochemistry **20**, 1907–1913.
- Brown R. (1995), Hive Products: pollen, propolis and royal ielly. Bee World **70**, 109-117.
- Cuesta Rubio O., Cuellar A., Rojas N., Velez Castro H., Rastrelli L. and Aquino R.(1999), A polyisoprenilated benzophenone from Cuban propolis. J. Nat. Prod. **62**, 1013–1015.
- Chari V. M., Jordan M., Wagner H. and Thies P. (1977), A ¹³C NMR study of the structure of an acyl-linarin from *Valeriana wallichii*. Phyochemistry **16**, 1110–1112.
- Dugas A. J., Castañeda Acosta J., Bonin G. C., Price K., Fischer N. and Winston G. (2000), Evaluation of total peroxyl radical-scavenging capacity of flavonoids: structure-action relationships. J Nat Prod. **63**, 327–331.

Erdtman G. (1954), An introduction to pollen analysis. Chronica Botanica Company, Waltham, MA.

- Focht J., Hansen S. H., Nielsen J. V., van den Berg-Segers A. and Riezler R. (1993), Bactericidal effect of Propolis in vitro against agents causing upper respiratory tract infections. Arzneimittel-Forsch. **43**, 921–923.
- Gajardo R. (1993), La vegetación natural de Chile. Clasificación y distribución geográfica. Editorial Universitaria. Santiago. Chile.
- García R., Erazo S., Canepa A. and Lemus I. (1990), Flavonoides de *Escallonia pulverulenta*. Anal. Real Acad. Farmacia **56**, 539–542.
- Ghisalberti E. (1979), Propolis: A review. Bee World **60**, 59–84.
- Greenaway W., Scaysbrook T. and Whatley F. R. (1988), Composition of propolis in Oxfordshire, W. K. and its relation to polar bud exudate. Z. Naturforsch. **43c**, 301–305.
- Greenaway W., Scaysbrook T. and Whatley F. R. (1990), The composition and plant origins of propolis: A report of work at Oxford. Bee World **71**, 107–118.
- Gupta M. (1995), In 270 Plantas medicinales iberoamericanas. CYTED 495–496.
- Heusser C. J. (1971), Pollen and spores of Chile. The University of Arizona Press. Tucson, Arizona. 167 pp. König B. (1985), Propolis. Bee World. 66, 136–138.
- Krol W., Scheller S., Shani J., Piettsz G. and Czuba Z. (1993), Synergistic effect of ethanolic extract of Propolis and antibiotics on the growth of *Staphylococcus aureus*. Arzneimittel-Forsch. **43**, 607–609.

- Marcucci M. C. (1995), Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie **26**, 83–99.
- Marticorena C. and Quezada M. (1995), Catálogo de la flora vascular de Chile. Gayana (Bot.) **42**, 1–157.
- Martos I., Cossentini M., Ferreres F. and Thomas-Barberan, F. A. (1997), Flavonoid composition of Tunisian honey and propolis, J. Agr. Chem. **54**, 2824–2829.
- Mirzoeva O. J. K. and Calder P.C (1996), The effect of propolis and its components on eiocosanoid production during the inflammatory response. Prostaglandins Leukotrienes and Essential Fatty Acids **55**, 441–449.

Montenegro G. (1984), Atlas de anatomía de las especies vegetales autóctonas de la Zona Central. Ediciones Uni-

versidad Católica de Chile, Chile. 154 pp.

- Montenegro G., Gómez, M. and Avila G. (1992), Importancia relativa de especies cuyo polen es utilizado por *Apis mellifera* en el área de la Reserva Nacional Los Ruiles, VII Región de Chile. Acta Botanica Malacitana 17. 167–174.
- Montenegro G. and G. Avila. (1995), Continua actividad de *Apis mellifera* en Lo Blanco, V Región de Chile. Ciencia de Investigación Agraria **22**, 44–48.
- Montenegro G., Avila G., Peña R. C. and Timmermann B. N. (2000), Botanical origin and seasonal production of propolis in hives of Central Chile. Bol. Bot. Univ. Sao Paulo 19, (in press).

Muñoz O., Peña R. C., Ureta E., Montenegro G. and Timmermann B. (2001), Z. Naturforsch. **56c**, 269–272.

- Natarajan K., Singh S., Burke T. R. Jr. and Aggarwal B. B. (1996), Caffeic acid phenethyl ester is a potent specific inhibitor of activation of nuclear transcription factor NF-kappa-B. Proc. Natl. Acad. Sci. USA. 93, 9090-9095.
- Ricciardelli d'Albore G. (1979), L'origine geographique de la propolis. Apidologie **10**, 241–267.
- Serra Bonhevi J. and Colli V. (1996), Phenolics composition of Propolis from China and South America. Z. Naturforsch. **49c**, 712–718.
- Soler C., Gil M. I., García Viguera C. and Thomas Barberán F. A. (1995), Flavonoid patterns of French honey with different floral origin. Apidologie **26**, 53–60.
- Tomás-Barberán F., García-Viguera C., Vit-Olivier P., Ferreres F. and Tomás-Lorente., F. (1993), Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry **34**, 191–196.
- Urbatsch L. E., Mabry T. J., Miyakado M., Ohno N. and Yoshiska H. (1976), Flavonol methyl ethers from *Ericameria diffusa*. Phytochemistry **15**, 440–441.
- Valcic S., Montenegro, G. and Timmermann B. N. (1998), Lignans from Chilean propolis. J. Nat. Prod. 61, 771 – 775.
- Valcic S., Montenegro G., Mujica A. M., Franzblau S., Singh M. P., Maiese W. N. and Timmermann. B. N. (1999), Phytochemical, morphological and biological investigation of propolis from Central Chile. Z. Naturforsch. 54c, 406-416.
- Volpert R. and Elstner E. F. (1996), Interactions of different extracts of propolis with leukocytes and leukocytic enzymes. Arzneimittel-Forsch. **46**, 47–51.
- Walker P. and Crane E. (1987), Constituents of propolis. Apidologie **18**, 327–334.